Variational Learning in Mixed-State Dynamic Graphical Models

نویسندگان

  • Vladimir Pavlovic
  • Brendan J. Frey
  • Thomas S. Huang
چکیده

Many real-valued stochastic time-series are locally linear (Gaussian), but globally nonlinear. For example, the trajectory of a human hand gesture can be viewed as a linear dynamic system driven by a nonlinear dynamic system that represents muscle actions. We present a mixed-state dynamic graphical model in which a hidden Markov model drives a linear dynamic system. This combination allows us to model both the discrete and continuous causes of trajectories such as human gestures. The number of computations needed for exact inference is exponential in the sequence length, so we derive an approximate variational inference technique that can also be used to learn the parameters of the discrete and continuous models. We show how the mixed-state model and the variational technique can be used to classify human hand gestures made with a computer mouse.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Propagation Algorithms for Variational Bayesian Learning

Variational approximations are becoming a widespread tool for Bayesian learning of graphical models. We provide some theoretical results for the variational updates in a very general family of conjugate-exponential graphical models. We show how the belief propagation and the junction tree algorithms can be used in the inference step of variational Bayesian learning. Applying these results to th...

متن کامل

VARIATIONAL DISCRETIZATION AND MIXED METHODS FOR SEMILINEAR PARABOLIC OPTIMAL CONTROL PROBLEMS WITH INTEGRAL CONSTRAINT

The aim of this work is to investigate the variational discretization and mixed finite element methods for optimal control problem governed by semi linear parabolic equations with integral constraint. The state and co-state are approximated by the lowest order Raviart-Thomas mixed finite element spaces and the control is not discreted. Optimal error estimates in L2 are established for the state...

متن کامل

Neural Variational Inference and Learning in Undirected Graphical Models

Many problems in machine learning are naturally expressed in the language of undirected graphical models. Here, we propose black-box learning and inference algorithms for undirected models that optimize a variational approximation to the log-likelihood of the model. Central to our approach is an upper bound on the logpartition function parametrized by a function q that we express as a flexible ...

متن کامل

Contributions to The Estimation of Mixed-State Conditionally Heteroscedastic Latent Factor Models: A Comparative Study

Mixed-State conditionally heteroscedastic latent factor models attempt to describe a complex nonlinear dynamic system with a succession of linear latent factor models indexed by a switching variable. Unfortunately, despite the framework’s simplicity exact state and parameter estimation are still intractable because of the interdependency across the latent factor volatility processes. Recently, ...

متن کامل

Graphical Models, Exponential Families, and Variational Inference

The formalism of probabilistic graphical models provides a unifying framework for capturing complex dependencies among random variables, and building large-scale multivariate statistical models. Graphical models have become a focus of research in many statistical, computational and mathematical fields, including bioinformatics, communication theory, statistical physics, combinatorial optimizati...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 1999